PTB Regulates the Metabolic Pathways and Cell Function of Keloid Fibroblasts through Alternative Splicing of PKM

Author:

Huang Rong1,Han Rong1,Yan Yucheng1,Yang Jifan1,Dong Guoxuan1,Wang Miao1ORCID,Su Zhiguo1,Jiao Hu1ORCID,Fan Jincai1

Affiliation:

1. The Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shijingshan District, Beijing 100144, China

Abstract

Keloids, benign fibroproliferative cutaneous lesions, are characterized by abnormal growth and reprogramming of the metabolism of keloid fibroblasts (KFb). However, the underlying mechanisms of this kind of metabolic abnormality have not been identified. Our study aimed to investigate the molecules involved in aerobic glycolysis and its exact regulatory mechanisms in KFb. We discovered that polypyrimidine tract binding (PTB) was significantly upregulated in keloid tissues. siRNA silencing of PTB decreased the mRNA levels and protein expression levels of key glycolytic enzymes and corrected the dysregulation of glucose uptake and lactate production. In addition, mechanistic studies demonstrated that PTB promoted a change from pyruvate kinase muscle 1 (PKM1) to PKM2, and silencing PKM2 substantially reduced the PTB-induced increase in the flow of glycolysis. Moreover, PTB and PKM2 could also regulate the key enzymes in the tricarboxylic acid (TCA) cycle. Assays of cell function demonstrated that PTB promoted the proliferation and migration of KFb in vitro, and this phenomenon could be interrupted by PKM2 silencing. In conclusion, our findings indicate that PTB regulates aerobic glycolysis and the cell functions of KFb via alternative splicing of PKM.

Funder

National Natural Science Foundation of China

CAMS Innovation Fund for Medical Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3