Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets

Author:

Alsayed Shahinda S. R.1,Gunosewoyo Hendra12ORCID

Affiliation:

1. Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia

2. Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia

Abstract

Mycobacterium tuberculosis (M. tb), the causative agent of TB, is a recalcitrant pathogen that is rife around the world, latently infecting approximately a quarter of the worldwide population. The asymptomatic status of the dormant bacteria escalates to the transmissible, active form when the host’s immune system becomes debilitated. The current front-line treatment regimen for drug-sensitive (DS) M. tb strains is a 6-month protocol involving four different drugs that requires stringent adherence to avoid relapse and resistance. Poverty, difficulty to access proper treatment, and lack of patient compliance contributed to the emergence of more sinister drug-resistant (DR) strains, which demand a longer duration of treatment with more toxic and more expensive drugs compared to the first-line regimen. Only three new drugs, bedaquiline (BDQ) and the two nitroimidazole derivatives delamanid (DLM) and pretomanid (PMD) were approved in the last decade for treatment of TB—the first anti-TB drugs with novel mode of actions to be introduced to the market in more than 50 years—reflecting the attrition rates in the development and approval of new anti-TB drugs. Herein, we will discuss the M. tb pathogenesis, current treatment protocols and challenges to the TB control efforts. This review also aims to highlight several small molecules that have recently been identified as promising preclinical and clinical anti-TB drug candidates that inhibit new protein targets in M. tb.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference105 articles.

1. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus;Kaufmann;Trends Microbiol.,2005

2. World Health Organisation (2022). Global Tuberculosis Report 2022, World Health Organization. Available online: https://www.who.int/publications/i/item/9789240061729.

3. Tuberculosis: Latency and Reactivation;Flynn;Infect. Immun.,2001

4. World Health Organisation (2020). Global Tuberculosis Report 2020, World Health Organization. Available online: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf.

5. Tuberculosis Pathogenesis and Immunity;Philips;Annu. Rev. Pathol. Mech. Dis.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3