Heterologous Expression and Bioactivity Determination of Monochamus alternatus Antibacterial Peptide Gene in Komagataella phaffii (Pichia pastoris)

Author:

Chu Xu123,Jiang Di12,Yu Lu123,Li Ming1ORCID,Wu Songqing12,Zhang Feiping12,Hu Xia123

Affiliation:

1. Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Insects have evolved to form a variety of complex natural compounds to prevent pathogen infection in the process of a long-term attack and defense game with various pathogens in nature. Antimicrobial Peptides (AMPs) are important effector molecules of the insect immune response to the pathogen invasion involved in bacteria, fungi, viruses and nematodes. The discovery and creation of new nematicides from these natural compounds is a key path to pest control. A total of 11 AMPs from Monochamus alternatus were classified into 3 categories, including Attacin, Cecropin and Defensin. Four AMP genes were successfully expressed by Komagataella phaffii KM71. The bioassay results showed that the exogenous expressed AMPs represented antimicrobial activity against Serratia (G−), Bacillus thuringiensis (G+) and Beauveria bassiana and high nematicide activity against Bursaphelenchus xylophilus. All four purified AMPs’ protein against B. xylophilus reached LC50 at 3 h (LC50 = 0.19 mg·mL−1 of MaltAtt-1, LC50 = 0.20 mg·mL−1 of MaltAtt-2 and MaltCec-2, LC50 = 0.25 mg·mL−1 of MaltDef-1). Furthermore, the AMPs could cause significant reduction of the thrashing frequency and egg hatching rate, and the deformation or fracture of the body wall of B. xylophilus. Therefore, this study is a foundation for further study of insect biological control and provides a theoretical basis for the research and development of new insecticidal pesticides.

Funder

National Major Emergency Science and Technology Program of China

National Key R & D Program of China

Forestry Key Program of Science and Technology in Fujian Province

Natural Science Foundation of Fujian Province, China

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

National Natural Science Foundation of China

Science and Technology innovation Special Fund project of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3