Forensic Age Estimation through a DNA Methylation-Based Age Prediction Model in the Italian Population: A Pilot Study

Author:

Onofri Martina1ORCID,Delicati Arianna2ORCID,Marcante Beatrice2,Carlini Luigi1,Alessandrini Federica3ORCID,Tozzo Pamela2ORCID,Carnevali Eugenia1ORCID

Affiliation:

1. Section of Legal Medicine, Department of Medicine and Surgery, Santa. Maria Hospital, University of Perugia, 05100 Terni, Italy

2. Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy

3. Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60121 Ancona, Italy

Abstract

DNA methylation is one of the epigenetic marks which has been studied intensively in recent years for age predicting purposes in the forensic area. In order to integrate age prediction into routine forensic workflow, the purpose of this study was to standardize and optimize a DNA methylation-based protocol tailored to the Italian context. A previously published protocol and age-predictive method was implemented for the analysis of 84 blood samples originating from Central Italy. The study here presented is based on the Single Base Extension method, considering five genes: ELOVL2, FHL2, KLF14, C1orf132, now identified as MIR29B2C, and TRIM59. The precise and specific steps consist of DNA extraction and quantification, bisulfite conversion, amplification of converted DNA, first purification, single base extension, second purification, capillary electrophoresis, and analysis of the results to train and test the tool. The prediction error obtained, expressed as mean absolute deviation, showed a value of 3.12 years in the training set and 3.01 years in the test set. Given that population-based differences in DNA methylation patterns have been previously reported in the literature, it would be useful to further improve the study implementing additional samples representative of the entire Italian population.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3