Evaluation of Polymeric Particles for Modular Tissue Cultures in Developmental Engineering

Author:

Xiang Yu1,Yan Jiongyi2,Bao Xujin1ORCID,Gleadall Andrew2,Roach Paul3ORCID,Sun Tao4ORCID

Affiliation:

1. Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK

2. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK

3. Department of Chemistry, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK

4. Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK

Abstract

Developmental engineering (DE) aims to culture mammalian cells on corresponding modular scaffolds (scale: micron to millimeter), then assemble these into functional tissues imitating natural developmental biology processes. This research intended to investigate the influences of polymeric particles on modular tissue cultures. When poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) particles (diameter: 5–100 µm) were fabricated and submerged in culture medium in tissue culture plastics (TCPs) for modular tissue cultures, the majority of adjacent PMMA, some PLA but no PS particles aggregated. Human dermal fibroblasts (HDFs) could be directly seeded onto large (diameter: 30–100 µm) PMMA particles, but not small (diameter: 5–20 µm) PMMA, nor all the PLA and PS particles. During tissue cultures, HDFs migrated from the TCPs surfaces onto all the particles, while the clustered PMMA or PLA particles were colonized by HDFs into modular tissues with varying sizes. Further comparisons revealed that HDFs utilized the same cell bridging and stacking strategies to colonize single or clustered polymeric particles, and the finely controlled open pores, corners and gaps on 3D-printed PLA discs. These observed cell–scaffold interactions, which were then used to evaluate the adaptation of microcarrier-based cell expansion technologies for modular tissue manufacturing in DE.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3