Variation in Lipid Species Profiles among Leukemic Cells Significantly Impacts Their Sensitivity to the Drug Targeting of Lipid Metabolism and the Prognosis of AML Patients

Author:

Lo Presti Caroline12ORCID,Yamaryo-Botté Yoshiki3,Mondet Julie14,Berthier Sylvie5,Nutiu Denisa1,Botté Cyrille3ORCID,Mossuz Pascal12

Affiliation:

1. Team “Epigenetic and Cellular Signaling”, Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France

2. Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France

3. Team “Apicolipid”, Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France

4. Department of Molecular Pathology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France

5. Platform of Cytometry, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France

Abstract

Several studies have linked bad prognoses of acute myeloid leukemia (AML) to the ability of leukemic cells to reprogram their metabolism and, in particular, their lipid metabolism. In this context, we performed “in-depth” characterization of fatty acids (FAs) and lipid species in leukemic cell lines and in plasma from AML patients. We firstly showed that leukemic cell lines harbored significant differences in their lipid profiles at steady state, and that under nutrient stress, they developed common mechanisms of protection that led to variation in the same lipid species; this highlights that the remodeling of lipid species is a major and shared mechanism of adaptation to stress in leukemic cells. We also showed that sensitivity to etomoxir, which blocks fatty acid oxidation (FAO), was dependent on the initial lipid profile of cell lines, suggesting that only a particular “lipidic phenotype” is sensitive to the drug targeting of FAO. We then showed that the lipid profiles of plasma samples from AML patients were significantly correlated with the prognosis of patients. In particular, we highlighted the impact of phosphocholine and phosphatidyl-choline metabolism on patients’ survival. In conclusion, our data show that balance between lipid species is a phenotypic marker of the diversity of leukemic cells that significantly influences their proliferation and resistance to stress, and thereby, the prognosis of AML patients.

Funder

French League against Cancer

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3