Dynamic Changes in Plant Secondary Metabolites Induced by Botrytis cinerea Infection

Author:

Wu Zhaochen1,Gao Tuqiang1,Liang Zhengya1,Hao Jianjun2ORCID,Liu Pengfei1,Liu Xili1

Affiliation:

1. Department of Plant Pathology, China Agricultural University, Beijing 100193, China

2. School of Food and Agriculture, University of Maine, Orono, ME 04469, USA

Abstract

In response to pathogen infection, some plants increase production of secondary metabolites, which not only enhance plant defense but also induce fungicide resistance, especially multidrug resistance (MDR) in the pathogen through preadaptation. To investigate the cause of MDR in Botrytis cinerea, grapes ‘Victoria’ (susceptible to B. cinerea) and ‘Shine Muscat’ (resistant to B. cinerea) were inoculated into seedling leaves with B. cinerea, followed by extraction of metabolites from the leaves on days 3, 6, and 9 after inoculation. The extract was analyzed using gas chromatography/quadrupole time-of-flight mass (GC/QTOF) combined with solid-phase microextraction (SPME) for volatile and nonvolatile metabolomic components. Nonvolatile metabolites γ-aminobutyric acid (GABA), resveratrol, piceid, and some carbohydrates or amino acids, coupled with volatile metabolites β-ocimene, α-farnesene, caryophyllene, germacrene D, β-copaene, and alkanes, accumulated at a higher level in grape leaves infected with B. cinerea compared to in noninoculated leaves. Among the established metabolic pathways, seven had greater impacts, including aminoacyl-tRNA biosynthesis, galactose metabolism, valine, leucine, and isoleucine biosynthesis. Furthermore, isoquinoline alkaloid biosynthesis; phenylpropanoid biosynthesis; monobactam biosynthesis; tropane, piperidine, and pyridine alkaloid biosynthesis; phenylalanine metabolism; and glucosinolate biosynthesis were related to antifungal activities. Based on liquid chromatography/quadrupole time-of-flight mass (LC/QTOF) detection and bioassay, B. cinerea infection induced production of plant secondary metabolites (PSMs) including eugenol, flavanone, reserpine, resveratrol, and salicylic acid, which all have inhibitory activity against B. cinerea. These compounds also promoted overexpression of ATP-binding cassette (ABC) transporter genes, which are involved in induction of MDR in B. cinerea.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3