Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome

Author:

Southey Bruce R.1ORCID,Johnson Rodney W.1,Rodriguez-Zas Sandra L.12

Affiliation:

1. Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2. Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

Prenatal stress often results in maternal immune activation (MIA) that can impact prenatal brain development, molecular processes, and substrates and products of metabolism that participate in physiological processes at later stages of life. Postnatal metabolic and immunological stressors can affect brain metabolites later in life, independently or in combination with prenatal stressors. The effects of prenatal and postnatal stressors on hippocampal metabolites were studied using a pig model of viral MIA exposed to immunological and metabolic stressors at 60 days of age using gas chromatography mass spectrometry. Postnatal stress and MIA elicited effects (FDR-adjusted p-value < 0.1) on fifty-nine metabolites, while eight metabolites exhibited an interaction effect. The hippocampal metabolites impacted by MIA or postnatal stress include 4-aminobutanoate (GABA), adenine, fumarate, glutamate, guanine, inosine, ornithine, putrescine, pyruvate, and xanthine. Metabolites affected by MIA or postnatal stress encompassed eight significantly (FDR-adjusted p-value < 0.1) enriched Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathways. The enriched arginine biosynthesis and glutathione metabolism pathways included metabolites that are also annotated for the urea cycle and polyamine biosynthesis pathways. Notably, the prenatal and postnatal challenges were associated with disruption of the glutathione metabolism pathway and changes in the levels of glutamic acid, glutamate, and purine nucleotide metabolites that resemble patterns elicited by drugs of abuse and may underlie neuroinflammatory processes. The combination of MIA and postnatal stressors also supported the double-hit hypothesis, where MIA amplifies the impact of stressors later in life, sensitizing the hippocampus of the offspring to future challenges. The metabolites and pathways characterized in this study offer evidence of the role of immunometabolism in understanding the impact of MIA and stressors later in life on memory, spatial navigation, neuropsychiatric disorders, and behavioral disorders influenced by the hippocampus.

Funder

USDA NIFA AFRI

NIH NIDA

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference74 articles.

1. A guide to immunometabolism for immunologists;Kishton;Nat. Rev. Immunol.,2016

2. Immunometabolism: Cellular Metabolism Turns Immune Regulator;Loftus;J. Biol. Chem.,2016

3. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils;Britt;Nat. Metab.,2022

4. Immunometabolism governs dendritic cell and macrophage function;Pearce;J. Exp. Med.,2015

5. Adenosine signaling and the immune system: When a lot could be too much;Antonioli;Immunol. Lett.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3