Discriminative Metabolomics Analysis and Cytotoxic Evaluation of Flowers, Leaves, and Roots Extracts of Matthiola longipetala subsp. livida

Author:

Marzouk Mona M.1ORCID,Hegazi Nesrine M.1ORCID,El Shabrawy Mona O. A.1,Farid Mai M.1,Kawashty Salwa A.1,Hussein Sameh R.1,Saleh Nabiel A. M.1

Affiliation:

1. Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre, Cairo P.O. Box 12622, Egypt

Abstract

Matthiola longipetala subsp. livida is an annual herb in Brassicaceae that has received little attention despite the family’s high reputation for health benefits, particularly cancer prevention. In this study, UPLC-HRMS-MS analysis was used for mapping the chemical constituents of different plant parts (i.e., flowers, leaves, and roots). Also, spectral similarity networks via the Global Natural Products Social Molecular Networking (GNPS) were employed to visualize their chemical differences and similarities. Additionally, the cytotoxic activity on HCT-116, HeLa, and HepG2 cell lines was evaluated. Throughout the current analysis, 154 compounds were annotated, with the prevalence of phenolic acids, glucosinolates, flavonol glucosides, lipids, peptides, and others. Predictably, secondary metabolites (phenolic acids, flavonoids, and glucosinolates) were predominant in flowers and leaves, while the roots were characterized by primary metabolites (peptides and fatty acids). Four diacetyl derivatives tentatively assigned as O-acetyl O-malonyl glucoside of quercetin (103), kaempferol (108 and 112), and isorhamnetin (114) were detected for the first time in nature. The flowers and leaves extracts showed significant inhibition of HeLa cell line propagation with LC50 values of 18.1 ± 0.42 and 29.6 ± 0.35 µg/mL, respectively, whereas the flowers extract inhibited HCT-116 with LC50 24.8 ± 0.45 µg/mL, compared to those of Doxorubicin (26.1 ± 0.27 and 37.6 ± 0.21 µg/mL), respectively. In conclusion, the flowers of M. longipetala are responsible for the abundance of bioactive compounds with cytotoxic properties.

Funder

National Research Centre

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3