HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice

Author:

Wang Yin,Guo Yifan,Xu Yingying,Wang Wenhong,Zhuang Shuzhao,Wang Ru,Xiao Weihua

Abstract

High-intensity interval training (HIIT), a new type of exercise, can effectively prevent the progression of metabolic diseases. The aim of this study was to investigate the effects of HIIT on liver inflammation and metabolic disorders in type 2 diabetes mellitus (T2DM) mice induced by a high-fat diet (HFD) combined with streptozotocin (STZ) and to explore the possible mechanisms of macrophage polarization and mitochondrial dynamics. Our results showed that HIIT can increase fatty acid oxidation-related gene (PPARα, CPT1α, and ACOX1) mRNA levels and decrease adipogenesis-related gene (PPARγ) mRNA levels to improve liver metabolism in T2DM mice. The improvement of lipid metabolism disorder may occur through increasing liver mitochondrial biosynthesis-related genes (PGC-1α and TFAM) and restoring mitochondrial dynamics-related gene (MFN2 and DRP1) mRNA levels. HIIT can also reduce the mRNA levels of liver inflammatory factors (TNF-α, IL-6, and MCP-1) in T2DM mice. The reduction in liver inflammation may occur through reducing the expression of total macrophage marker (F4/80) and M1 macrophage marker (CD86) mRNA and protein and increasing the expression of M2 macrophage marker (CD163, CD206, and Arg1) mRNA and protein in the liver. HIIT can also increase the expression of insulin signaling pathway (IRS1, PI3K, and AKT) mRNA and protein in the liver of T2DM mice, which may be related to the improvements in liver inflammation and lipid metabolism. In conclusion, these results suggested that 8 weeks of HIIT can improve inflammation and lipid metabolism disorders in the liver of type 2 diabetes mellitus mice, macrophage M1/M2 polarization, and mitochondrial dynamics may be involved in this process.

Funder

Key Lab of Exercise and Health Sciences of Ministry of Education

Shanghai Key Lab of Human Performance

Shanghai Education Development Foundation and Shanghai Municipale Education Commission

Shanghai Science and Technology Plan Project

Research Program of Exercise and Public Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference60 articles.

1. (2021). International Diabetes Federation (IDF) DIABETES ATLAS, [10th ed.]. Available online: https://diabetesatlas.org/data/en/world/.

2. Macrophage function in obesity-induced inflammation and insulin resistance;Lauterbach;Pflug. Arch.,2017

3. Kupffer cell activation is a causal factor for hepatic insulin resistance;Lanthier;Am. J. Physiol. Gastrointest Liver Physiol.,2010

4. An efficient method to isolate and culture mouse Kupffer cells;Li;Immunol. Lett.,2014

5. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E;Ni;Sci. Rep.,2015

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3