Differential Expression Analysis Utilizing Condition-Specific Metabolic Pathways

Author:

Mattei Gianluca1ORCID,Gan Zhuohui2,Ramazzotti Matteo1ORCID,Palsson Bernhard O.3,Zielinski Daniel C.3ORCID

Affiliation:

1. Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy

2. School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China

3. Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA

Abstract

Pathway analysis is ubiquitous in biological data analysis due to the ability to integrate small simultaneous changes in functionally related components. While pathways are often defined based on either manual curation or network topological properties, an attractive alternative is to generate pathways around specific functions, in which metabolism can be defined as the production and consumption of specific metabolites. In this work, we present an algorithm, termed MetPath, that calculates pathways for condition-specific production and consumption of specific metabolites. We demonstrate that these pathways have several useful properties. Pathways calculated in this manner (1) take into account the condition-specific metabolic role of a gene product, (2) are localized around defined metabolic functions, and (3) quantitatively weigh the importance of expression to a function based on the flux contribution of the gene product. We demonstrate how these pathways elucidate network interactions between genes across different growth conditions and between cell types. Furthermore, the calculated pathways compare favorably to manually curated pathways in predicting the expression correlation between genes. To facilitate the use of these pathways, we have generated a large compendium of pathways under different growth conditions for E. coli. The MetPath algorithm provides a useful tool for metabolic network-based statistical analyses of high-throughput data.

Funder

Novo Nordisk Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3