Integrative Analysis of Metabolome and Transcriptome Reveals Molecular Insight into Metabolomic Variations during Hawthorn Fruit Development

Author:

Wang Yan1,Hao Ruixin1,Guo Rongkun1,Nong Huilan1,Qin Yu1,Dong Ningguang1

Affiliation:

1. Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China

Abstract

Hawthorn (Crataegus pinnatifida var. major), a cultivated fruit tree, is native and unique to China. Its fruits have high nutritional, health, and medicinal values. However, the development and ripening process of hawthorns is accompanied by dramatic changes in flavor, aroma, and bioactive phytochemicals, which are the fundamental factors that contribute to the potential health benefits and establishment of fruit quality. Therefore, an exploration of the dynamic changes in metabolites and their regulatory networks during the development of hawthorn fruits can elucidate the formation mechanisms of active substances in hawthorn fruits. In this study, we used a broad targeted metabolomics approach to identify and analyze the dynamics of metabolites in hawthorn fruits at five developmental stages. The results revealed 998 primary and secondary metabolites that were classified into 15 categories. The accumulation levels of most sugars increased during fruit development and then accelerated at the fruit ripening stage. The accumulation levels of a few organic acids (e.g., citric acid, isocitric acid, and quinic acid) continuously increased. Many organic acids exhibited significant decreasing trends. Among the 561 secondary metabolites detected, 189 were phenolic acids and 199 were flavonoids. The levels of many flavonoids were significantly reduced at later stages of fruit development; in contrast, the levels of two anthocyanins significantly increased during fruit ripening. Correlation analysis revealed that there is a certain correlation within and between primary as well as secondary metabolites during fruit development. Furthermore, the integration of metabolomic and transcriptomic data in this study revealed that changes in the expression of some differentially expressed genes (DEGs) were associated with the accumulation of metabolites such as sugars, organic acids, and flavonoids, e.g., the upregulated expression levels of CS (citrate synthase) genes were consistent with the continued accumulation of citric acid. Overall, this study demonstrates the metabolic changes that occur during the development of hawthorn fruit, explores the molecular mechanisms that underlie metabolite changes during fruit development, and lays a strong theoretical foundation for the improvement of hawthorn fruit quality and the development of functional components.

Funder

Youth Research Foundation of ‘Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Science’

Beijing Academy of Agriculture and Forestry Science Innovation Capability Construction Special Project

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3