Comparative Antihyperglycemic and Antihyperlipidemic Effects of Lawsone Methyl Ether and Lawsone in Nicotinamide-Streptozotocin-Induced Diabetic Rats

Author:

Khan Muhammad12,Shah Muhammad Ajmal3ORCID,Kamal Mustafa4ORCID,Ola Mohammad Shamsul5ORCID,Ali Mehboob6,Panichayupakaranant Pharkphoom17ORCID

Affiliation:

1. Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand

2. Department of Pharmacology, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan

3. Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan

4. Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

5. Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

6. Senior Scientist Toxicology Invivotek Nexus, a Genesis Biotech Group LLC Company, 17 Black Forest RD, Hamilton, NJ 08690, USA

7. Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand

Abstract

Our previous study uncovered potent inhibitory effects of two naphthoquinones from Impatiens balsamina, namely lawsone methyl ether (2-methoxy-1,4-naphthoquinone, LME) and lawsone (2-hydroxy-1,4-naphthoquinone), against α-glucosidase. This gave us the insight to compare the hypoglycemic and hypolipidemic effects of LME and lawsone in high-fat/high-fructose-diet- and nicotinamide-streptozotocin-induced diabetic rats for 28 days. LME and lawsone at the doses of 15, 30, and 45 mg/kg, respectively, produced a substantial and dose-dependent reduction in the levels of fasting blood glucose (FBG), HbA1c, and food/water intake while boosting the insulin levels and body weights of diabetic rats. Additionally, the levels of total cholesterol (TC), triglycerides (TGs), high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), aspartate transaminase (AST), alanine transaminase (ALT), creatinine, and blood urea nitrogen (BUN) in diabetic rats were significantly normalized by LME and lawsone, without affecting the normal rats. LME at a dose of 45 mg/kg exhibited the most potent antihyperglycemic and antihyperlipidemic effects, which were significantly comparable to glibenclamide but higher than those of lawsone. Furthermore, the toxicity evaluation indicated that both naphthoquinones were entirely safe for use in rodent models at doses ≤ 50 mg/kg. Therefore, the remarkable antihyperglycemic and antihyperlipidemic potentials of LME make it a promising option for future drug development.

Funder

Prince of Songkla University, Thailand

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3