Utilizing Deep Learning for Defect Inspection in Hand Tool Assembly

Author:

Lin Hong-Dar1,Jheng Cheng-Kai1,Lin Chou-Hsien2,Chang Hung-Tso1

Affiliation:

1. Department of Industrial Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan

2. Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712-0273, USA

Abstract

The integrity of product assembly in the precision assembly industry significantly influences the quality of the final products. During the assembly process, products may acquire assembly defects due to personnel oversight. A severe assembly defect could impair the product’s normal function and potentially cause loss of life or property for the user. For workpiece defect inspection, there is limited discussion on the simultaneous detection of the primary kinds of assembly anomaly (missing parts, misplaced parts, foreign objects, and extra parts). However, these assembly anomalies account for most customer complaints in the traditional hand tool industry. This is because no equipment can comprehensively inspect major assembly defects, and inspections rely solely on professionals using simple tools and their own experience. Thus, this study proposes an automated visual inspection system to achieve defect inspection in hand tool assembly. This study samples the work-in-process from three assembly stations in the ratchet wrench assembly process; an investigation of 28 common assembly defect types is presented, covering the 4 kinds of assembly anomaly in the assembly operation; also, this study captures sample images of various assembly defects for the experiments. First, the captured images are filtered to eliminate surface reflection noise from the workpiece; then, a circular mask is given at the assembly position to extract the ROI area; next, the filtered ROI images are used to create a defect-type label set using manual annotation; after this, the R-CNN series network models are applied to object feature extraction and classification; finally, they are compared with other object detection models to identify which inspection model has the better performance. The experimental results show that, if each station uses the best model for defect inspection, it can effectively detect and classify defects. The average defect detection rate (1-β) of each station is 92.64%, the average misjudgment rate (α) is 6.68%, and the average correct classification rate (CR) is 88.03%.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3