Global Profiling of Dynamic Alternative Splicing Modulation in Arabidopsis Root upon Ralstonia solanacearum Infection

Author:

Qin Ning,Zhang Ruize,Zhang Mancang,Niu Yang,Fu Shouyang,Wang Yisa,Wang Dongdong,Chen Yue,Zhao Cuizhu,Chen Qin,Lu Haibin

Abstract

Alternative splicing (AS) is an important mechanism by which eukaryotes regulate transcription and protein diversity. The dynamic changes in AS that occur on a genome-wide scale during interactions between plant roots and pathogens remain unknown. Here, we used the interaction between Arabidopsis and Ralstonia solanacearum as a model to explore the AS changes that take place during the response of roots to infection by means of high-throughput RNA-sequencing. We showed that dynamic changes in AS occur much earlier than changes at the level of transcription during R.solanacearum infection. Comparing genes that are regulated at the transcriptional and AS levels indicated that there are few common genes between differentially spliced genes (DSGs) and differentially expressed genes (DEGs). The functional gene ontology (GO) analysis identified that the enriched GO terms for the DSGs were different from those of the DEGs. The DSGs were over-represented in GO terms associated with post-transcriptional and translational regulations, suggesting that AS may act on RNA stability and during post-translation, thus affecting the output of plant defense molecules. Meanwhile, changes in DSGs were infection stage-specific. Furthermore, the nucleotide binding domain and leucine-rich repeat proteins and receptor-like kinases, key regulators in plant immunity, were shown to undergo dynamic changes in AS in response to R. solanacearum. Taken together, AS, along with transcription, modulates plant root defense to R. solanacearum through transcriptome reprogramming.

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3