Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis

Author:

Trivedi Jignesh1ORCID,Chourasia Arvind2

Affiliation:

1. Post Graduate Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, India

2. Tridev Resins (India) Pvt. Ltd., 136/E-1, II Phase, G.I.D.C., Vapi 396195, India

Abstract

An efficient redox initiating system, ceric ammonium nitrate/nitric acid, has been employed for the first time to carry out photo-induced graft copolymerization of acrylonitrile (AN) onto sodium salt of partially carboxymethylated sodium alginate, having an average degree of substitution value to be 1.10. The photo-grafting reaction conditions for maximum grafting have been systematically optimized by varying the reaction variables such as reaction time, temperature, the concentration of acrylonitrile monomer, ceric ammonium nitrate, and nitric acid, as well as the amount of the backbone. The optimum reaction conditions are obtained with a reaction time of 4 h, reaction temperature of 30 °C, acrylonitrile monomer concentration of 0.152 mol/L, initiator concentration of 5 × 10−3 mol/L, nitric acid concentration of 0.20 mol/L, amount of backbone of 0.20 (dry basis) and the total volume of the reaction system of 150 mL. The highest percentage of grafting (%G) and grafting efficiency (%GE) achieved are 316.53% and 99.31%, respectively. The optimally prepared graft copolymer, sodium salt of partially carboxymethylated sodium alginate-g-polyacrylonitrile (%G = 316.53), has been hydrolyzed in an alkaline medium (0.7N NaOH, 90–95 °C for ~2.5 h) to obtain the superabsorbent hydrogel, H–Na–PCMSA–g–PAN. The chemical structure, thermal characteristics, and morphology of the products have also been studied.

Funder

University Grants Commission, New Delhi, India

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3