RiPa-Net: Recognition of Rice Paddy Diseases with Duo-Layers of CNNs Fostered by Feature Transformation and Selection

Author:

Attallah Omneya1ORCID

Affiliation:

1. Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt

Abstract

Rice paddy diseases significantly reduce the quantity and quality of crops, so it is essential to recognize them quickly and accurately for prevention and control. Deep learning (DL)-based computer-assisted expert systems are encouraging approaches to solving this issue and dealing with the dearth of subject-matter specialists in this area. Nonetheless, a major generalization obstacle is posed by the existence of small discrepancies between various classes of paddy diseases. Numerous studies have used features taken from a single deep layer of an individual complex DL construction with many deep layers and parameters. All of them have relied on spatial knowledge only to learn their recognition models trained with a large number of features. This study suggests a pipeline called “RiPa-Net” based on three lightweight CNNs that can identify and categorize nine paddy diseases as well as healthy paddy. The suggested pipeline gathers features from two different layers of each of the CNNs. Moreover, the suggested method additionally applies the dual-tree complex wavelet transform (DTCWT) to the deep features of the first layer to obtain spectral–temporal information. Additionally, it incorporates the deep features of the first layer of the three CNNs using principal component analysis (PCA) and discrete cosine transform (DCT) transformation methods, which reduce the dimension of the first layer features. The second layer’s spatial deep features are then combined with these fused time-frequency deep features. After that, a feature selection process is introduced to reduce the size of the feature vector and choose only those features that have a significant impact on the recognition process, thereby further reducing recognition complexity. According to the results, combining deep features from two layers of different lightweight CNNs can improve recognition accuracy. Performance also improves as a result of the acquired spatial–spectral–temporal information used to learn models. Using 300 features, the cubic support vector machine (SVM) achieves an outstanding accuracy of 97.5%. The competitive ability of the suggested pipeline is confirmed by a comparison of the experimental results with findings from previously conducted research on the recognition of paddy diseases.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3