Some Mechanical Constraints to the Biomimicry with Peripheral Nerves

Author:

Sergi Pier Nicola1ORCID

Affiliation:

1. Translational Neural Engineering Area, The Biorobotics Institute and Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy

Abstract

Novel high technology devices built to restore impaired peripheral nerves should be biomimetic in both their structure and in the biomolecular environment created around regenerating axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic constraints due to their complex mechanical behaviour. However, it is not currently clear how these constraints could be defined. As a consequence, in this work, an explicit, deterministic, and physical-based framework was proposed to describe some mechanical constraints needed to mimic the peripheral nerve behaviour in extension. More specifically, a novel framework was proposed to investigate whether the similarity of the stress/strain curve was enough to replicate the natural nerve behaviour. An original series of computational optimizing procedures was then introduced to further investigate the role of the tangent modulus and of the rate of change of the tangent modulus with strain in better defining the structural biomimicry with peripheral nerves.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3