In Vitro Studies Regarding the Effect of Cellulose Acetate-Based Composite Coatings on the Functional Properties of the Biodegradable Mg3Nd Alloys

Author:

Streza Alexandru1,Antoniac Aurora1,Manescu (Paltanea) Veronica Manescu12ORCID,Ciocoiu Robert1ORCID,Cotrut Cosmin-Mihai1ORCID,Miculescu Marian1ORCID,Miculescu Florin1ORCID,Antoniac Iulian13ORCID,Fosca Marco4ORCID,Rau Julietta V.45ORCID,Dura Horatiu6

Affiliation:

1. Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania

2. Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania

3. Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania

4. Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy

5. Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, Build. 2, 119048 Moscow, Russia

6. Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania

Abstract

Magnesium (Mg) alloys are adequate materials for orthopedic and maxilo-facial implants due to their biocompatibility, good mechanical properties closely related to the hard tissues, and processability. Their main drawbacks are the high-speed corrosion process and hydrogen release. In order to improve corrosion and mechanical properties, the Mg matrix can be strengthened through alloying elements with high temperature-dependent solubility materials. Rare earth elements (RE) contribute to mechanical properties and degradation improvement. Another possibility to reduce the corrosion rate of Mg-based alloys was demonstrated to be the different types of coatings (bioceramics, polymers, and composites) applied on their surface. The present investigation is related to the coating of two Mg-based alloys from the system Mg3Nd (Mg-Nd-Y-Zr-Zn) with polymeric-based composite coatings made from cellulose acetate (CA) combined with two fillers, respectively hydroxyapatite (HAp) and Mg particles. The main functions of the coatings are to reduce the biodegradation rate and to modify the surface properties in order to increase osteointegration. Firstly, the microstructural features of the experimental Mg3Nd alloys were revealed by optical microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy. Apart from the surface morphology revealed by SEM, the roughness and wettability of all experimental samples were evaluated. The corrosion behavior of the uncoated and coated samples of both Mg3Nd alloys was investigated by immersion testing and electrochemical testing using Simulated Body Fluid as the medium. The complex in vitro research performed highlights that the composite coating based on CA with HAp particles exhibited the best protective effect for both Mg3Nd alloys.

Funder

Romanian Ministry of Education and Research, CNCS-UEFISCDI

National Program for Research of the National Association of Technical Universities—GNAC ARUT 2023

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3