The Impact of Left Ventricular Assist Device Outflow Graft Positioning on Aortic Hemodynamics: Improving Flow Dynamics to Mitigate Aortic Insufficiency

Author:

Gu Zhuohan1ORCID,Ong Chi Wei2ORCID,Mi Yongzhen3ORCID,Seetharaman Ashwin1ORCID,Ling Ryan Ruiyang4ORCID,Ramanathan Kollengode45ORCID,Leo Hwa Liang1

Affiliation:

1. Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore

2. School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore

3. Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore

4. Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore

5. Cardiothoracic Intensive Care Unit, National University Heart Centre Singapore, National Univeristy Health System, Singapore 119228, Singapore

Abstract

Heart failure is a global health concern with significant implications for healthcare systems. Left ventricular assist devices (LVADs) provide mechanical support for patients with severe heart failure. However, the placement of the LVAD outflow graft within the aorta has substantial implications for hemodynamics and can lead to aortic insufficiency during long-term support. This study employs computational fluid dynamics (CFD) simulations to investigate the impact of different LVAD outflow graft locations on aortic hemodynamics. The introduction of valve morphology within the aorta geometry allows for a more detailed analysis of hemodynamics at the aortic root. The results demonstrate that the formation of vortex rings and subsequent vortices during the high-velocity jet flow from the graft interacted with the aortic wall. Time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) indicate that modification of the outflow graft location changes mechanical states within the aortic wall and aortic valve. Among the studied geometric factors, both the height and inclination angle of the LVAD outflow graft are important in controlling retrograde flow to the aortic root, while the azimuthal angle primarily determines the rotational direction of blood flow in the aortic arch. Thus, precise positioning of the LVAD outflow graft emerges as a critical factor in optimizing patient outcomes by improving the hemodynamic environment.

Funder

Singapore Biodesign Early Prototyping Fund

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3