Ground Contact Force and Moment Estimation for Human–Exoskeleton Systems Using Dynamic Decoupled Coordinate System and Minimum Energy Hypothesis

Author:

Li Hongwu1,Ju Haotian1,Liu Junchen1,Wang Ziqi1,Zhang Qinghua1,Li Xianglong1ORCID,Huang Yi1,Zheng Tianjiao1,Zhao Jie1,Zhu Yanhe1

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Abstract

Estimating the contact forces and moments (CFMs) between exoskeletons’ feet and the ground is a prerequisite for calculating exoskeletons’ joint moments. However, comfortable, portable, and high-precision force sensors for CFM detection are difficult to design and manufacture. In addition, there are many unknown CFM components (six force components and six moment components in the double-support phase). These reasons make it challenging to estimate CFMs precisely. In this paper, we propose a novel method for estimating these CFMs based on a proposed dynamic decoupled coordinate system (DDCS) and the minimum energy hypothesis. By decomposing these CFMs into a DDCS, the number of unknowns can be significantly reduced from twelve to two. Meanwhile, the minimum energy hypothesis provides a relatively reliable target for optimizing the remaining two unknown variables. We verify the accuracy of this method using a public data set about human walking. The validation shows that the proposed method is capable of estimating CFMs. This study provides a practical way to estimate the CFMs under the soles, which contributes to reducing the research and development costs of exoskeletons by avoiding the need for expensive plantar sensors. The sensor-free approach also reduces the dependence on high-precision, portable, and comfortable CFM detection sensors, which are usually difficult to design.

Funder

National Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3