Spatiotemporal Variations of Aerosol Optical Depth and the Spatial Heterogeneity Relationship of Potential Factors Based on the Multi-Scale Geographically Weighted Regression Model in Chinese National-Level Urban Agglomerations

Author:

Yuan Jiaxin123ORCID,Wang Xuhong123ORCID,Feng Zihao123,Zhang Ying123,Yu Mengqianxi123

Affiliation:

1. College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China

3. Shaanxi Xi’an Urban Forest Ecosystem Research Station, Northwest University, Xi’an 710127, China

Abstract

Investigating the spatiotemporal variation characteristics of aerosol optical depth (AOD) and its driving factors is essential for assessing atmospheric environmental quality and alleviating air pollution. Based on a 22-year high-resolution AOD dataset, the spatiotemporal variations of AOD in mainland China and ten national urban agglomerations were explored based on the Mann–Kendall trend test and Theil–Sen median method. Random forest (RF) and multiscale geographically weighted regression (MGWR) were combined to identify the main driving factors of AOD in urban agglomerations and to reveal the spatial heterogeneity of influencing factors. The results showed that areas with high annual average AOD concentrations were mainly concentrated in the Chengdu–Chongqing, Central Plains, Shandong Peninsula, and Middle Yangtze River urban agglomerations. Southern Beijing–Tianjin–Hebei and its surrounding areas revealed the highest AOD pollution during summer, whereas the worst pollution during the remaining three seasons occurred in the Chengdu–Chongqing urban agglomeration. Temporally, except for the Ha-Chang and Mid-Southern Liaoning urban agglomerations, where the average annual AOD increased, the other urban agglomerations showed a decreasing trend. Among them, the Central Plains, Middle Yangtze River, Guanzhong Plain, and Yangtze River Delta urban agglomerations all exhibited a decline greater than 20%. According to the spatial trends, most urban agglomerations encompassed much larger areas of decreasing AOD values than areas of increasing AOD values, indicating that the air quality in most areas has recently improved. RF analysis revealed that PM2.5 was the dominant factor in most urban clusters, followed by meteorological factors. MGWR results show that the influencing factors have different spatial scale effects on AOD in urban agglomerations. The socioeconomic factors and PM2.5 showed strong spatial non-stationarity with regard to the spatial distribution of AOD. This study can provide a comprehensive understanding of AOD differences among urban agglomerations, and it has important theoretical and practical implications for improving the ecological environment and promoting sustainable development.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Shaanxi Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3