Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning

Author:

Liu Yiheng1ORCID,He Zitong2,Jia Liyiyang2,Xue Yiwei2,Du Yuxuan2,Tan Huiwen2,Zhang Xianzhi3,Ji Yu1,Tong Yigang1,Xu Haijun4,Liu Luo1ORCID

Affiliation:

1. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

2. College of International Education, Beijing University of Chemical Technology, Beijing 100029, China

3. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

4. College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of −110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (−101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the “ML-Guided Design Correctly Predicts Combinatorial Effects Strategy” compared to the “ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy”. To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3