Power Optimization of Multi-Type Mixed-Connection Photovoltaic Generation System for Recreational Vehicles

Author:

Tang DaiBin12ORCID,Siaw Fei Lu1ORCID,Thio Tzer Hwai Gilbert1ORCID

Affiliation:

1. Centre for Sustainability in Advanced Electrical and Electronics Systems (CSAEES), Faculty of Engineering, Built Environment and Information Technology, SEGi University, Petaling Jaya 47810, Malaysia

2. School of Electrical Engineering, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu 241002, China

Abstract

The utilization of photovoltaic (PV) generation to charge storage batteries in recreational vehicles (RVs) is becoming increasingly prevalent. However, the performance of PV generation systems is hindered by the mismatch caused by different module types and varying environmental conditions. This discrepancy negatively impacts the output performance of PV modules, resulting in reduced system efficiency. To address this issue, this paper explored the series–parallel output characteristics of different types of PV modules and summarized the methods for configuring PV modules in a mixed-structure PV generation system for RV energy supplementation. Building upon this foundation, a novel equalization scheme based on extremum-seeking control (ESC) is introduced. The scheme initially employs a forward–flyback converter (FFC) to equalize the current among series-connected PV modules, followed by matching the voltage between parallel-connected PV module strings. Finally, the ESC is utilized to optimize the real-time output power of the PV generation system, thereby enhancing overall system efficiency. Through simulation experiments conducted on a PV generation system with four types of mixed-connection PV modules employing the PLECS simulation platform, simulated results demonstrate the effectiveness of the proposed scheme in improving PV module output performance and maximum power tracking efficiency. The simulation data reveal that the proposed scheme achieves an impressive average tracking efficiency of 99.15%, surpassing the efficiency of the global maximum power point tracking scheme based on an enhanced perturb and observe algorithm.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3