Ontology Development for Detecting Complex Events in Stream Processing: Use Case of Air Quality Monitoring

Author:

Yemson Rose1,Kabir Sohag1ORCID,Thakker Dhavalkumar2,Konur Savas1ORCID

Affiliation:

1. School of Computer Science, AI, and Electronics, University of Bradford, Bradford BD7 1DP, UK

2. School of Computer Science, University of Hull, Cottingham Road, Hull HU6 7RX, UK

Abstract

With the increasing amount of data collected by IoT devices, detecting complex events in real-time has become a challenging task. To overcome this challenge, we propose the utilisation of semantic web technologies to create ontologies that structure background knowledge about the complex event-processing (CEP) framework in a way that machines can easily comprehend. Our ontology focuses on Indoor Air Quality (IAQ) data, asthma patients’ activities and symptoms, and how IAQ can be related to asthma symptoms and daily activities. Our goal is to detect complex events within the stream of events and accurately determine pollution levels and symptoms of asthma attacks based on daily activities. We conducted a thorough testing of our enhanced CEP framework with a real dataset, and the results indicate that it outperforms traditional CEP across various evaluation metrics such as accuracy, precision, recall, and F1-score.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3