Satellite-Based Evidences to Improve Cropland Productivity on the High-Standard Farmland Project Regions in Henan Province, China

Author:

Yan Huimin,Du Wenpeng,Zhou Ying,Luo Liang,Niu Zhong’enORCID

Abstract

Under the pressure of limited arable land and increasing demand for food, improving the quality of existing arable land has become a priority to ensure food security. The Chinese government gives great importance to improving cropland productivity by focusing on the construction of high-standard farmland (HSF). The government puts forward the goal of constructing 1.2 billion mu (100 mu ≈ 6.67 hectares) of HSF by 2030. Therefore, how to apply remote sensing to monitor the ability to increase and stabilize yields in HSF project regions has become an essential task for proving the efficiency of HSF construction. Based on HSF project distribution data, Moderate Resolution Imaging Spectroradiometer (MODIS) data and Landsat-8 Operational Land Imager (Landsat8-OLI) data, this study develops a method to monitor cropland productivity improvement by measuring cropland productivity level (CPL), disaster resistance ability (DRA) and homogeneous yield degree (HYD) in the HSF project region. Taking China’s largest grain production province (Henan Province) as a case study area, research shows that a light use efficiency model that includes multiple cropping data can effectively detect changes in cropland productivity before and after HSF construction. Furthermore, integrated Landsat8-OLI and MODIS data can detect changes in DRA and HYD before and after HSF construction with higher temporal and spatial resolution. In 109 HSF project regions concentrated and distributed in contiguous regions in Henan Province, the average cropland productivity increased by 145 kg/mu; among the eight sample project regions, DRA was improved in seven sample project regions; and the HYD in all eight sample project regions was greatly improved (the degree of increase is more than 75%). This evidence from satellites proves that the Chinese HSF project has significantly improved the CPL, DRA and HYD of cropland, while this study also verifies the practicability of the three indices to monitor the efficiency of HSF construction.

Funder

the Strategic Priority Research Program the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3