Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens

Author:

Niu Guoyi1ORCID,Zhang Tingrui2ORCID,Cao Shengxiong3,Zhang Xi1,Tao Linli1

Affiliation:

1. Yunnan Provincial Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China

2. College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China

3. Yun Zhong Mei Agriculture Technology Co., Ltd., Kunming 651701, China

Abstract

This study investigates the effect of grinding methods, including roller mill, hammer mill, and two-stage grinding, on the particle size distribution of corn and the effect of corn particle size on the nutrient digestibility of native chickens in Southwest China. The roller mill, hammer mill, and a combination of the hammer mill and roller mill were used to obtain corn with various coarseness. Corn with different coarseness obtained using a combination of the hammer mill and roller mill was fed to Chahua chicken No. 2-type chickens (CHC2s). A total of 192 CHC2s in weeks 12 and 19 were randomly allocated to eight groups in triplicate. The results show that the geometric mean diameter (dgw) and the geometric standard deviation (Sgw) were significantly (p < 0.05) affected by the grinding methods. The Sgw obtained when using a sieve of 2.0 mm in a hammer mill was lower (p < 0.05) than that obtained using a 4.5 mm sieve. Combining the roller mill and hammer mill increased the uniformity of the particle size when grinding coarse particles. For fine particles, the dgw and Sgw obtained when using the hammer mill were significantly lower (p < 0.05) than those obtained when using the roller mill and two-stage grinding method. Reducing the particle size of the corn (<900 µm) significantly increased the dry matter, crude protein, amino acid digestibility, and apparent metabolizable energy in the chicken in weeks 12 and 19. Fine particles significantly increased the crude protein digestibility of the CHC2s at week 12, while there was no significant effect on the crude protein and amino acid digestibility in the CHC2s at week 19. In conclusion, different grinding methods can affect the particle size distribution. For a coarse particle size, combining the roller mill and hammer mill tends to produce a more uniform particle size. Finely ground corn (between 700 µm and 900 µm) improved the dry matter (DM), apparent metabolizable energy (AME), and crude protein (CP) digestibility of the CHC2s at week 12. An increased particle size did not impact the CP and amino acid (AA) digestibility of the CHC2s at week 19.

Funder

Major Science and Technology Project in Yunnan Province

Modern Agricultural Industrial Technology System Construction of Yunnan province

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3