Transgenic Mice for the Translational Study of Neuropathic Pain and Dystonia

Author:

Scuteri DamianaORCID,Hamamura KengoORCID,Watanabe Chizuko,Tonin PaoloORCID,Bagetta GiacintoORCID,Corasaniti Maria TizianaORCID

Abstract

Murine models are fundamental in the study of clinical conditions and the development of new drugs and treatments. Transgenic technology has started to offer advantages in oncology, encompassing all research fields related to the study of painful syndromes. Knockout mice or mice overexpressing genes encoding for proteins linked to pain development and maintenance can be produced and pain models can be applied to transgenic mice to model the most disabling neurological conditions. Due to the association of movement disorders with sensitivity and pain processing, our group focused for the first time on the role of the torsinA gene GAG deletion—responsible for DYT1 dystonia—in baseline sensitivity and neuropathic responses. The aim of the present report are to review the complex network that exists between the chaperonine-like protein torsinA and the baseline sensitivity pattern—which are fundamental in neuropathic pain—and to point at its possible role in neurodegenerative diseases.

Funder

Ministry of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference129 articles.

1. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 2001–2002,2006

2. Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K.

3. The problem of adult-onset idiopathic torsion dystonia and other isolated dyskinesias in adult life (including blepharospasm, oromandibular dystonia, dystonic writer’s cramp, and torticollis, or axial dystonia);Marsden;Adv. Neurol.,1976

4. A new twist on the anatomy of dystonia: The basal ganglia and the cerebellum?

5. Effect of Gabapentin in a Neuropathic Pain Model in Mice Overexpressing Human Wild-Type or Human Mutated Torsin A

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3