Gut Barrier Damage and Gut Translocation of Pathogen Molecules in Lupus, an Impact of Innate Immunity (Macrophages and Neutrophils) in Autoimmune Disease

Author:

Charoensappakit AwirutORCID,Sae-khow Kritsanawan,Leelahavanichkul Asada

Abstract

The gut barrier is a single cell layer that separates gut micro-organisms from the host, and gut permeability defects result in the translocation of microbial molecules from the gut into the blood. Despite the silent clinical manifestation, gut translocation of microbial molecules can induce systemic inflammation that might be an endogenous exacerbating factor of systemic lupus erythematosus. In contrast, circulatory immune-complex deposition and the effect of medications on the gut, an organ with an extremely large surface area, of patients with active lupus might cause gut translocation of microbial molecules, which worsens lupus severity. Likewise, the imbalance of gut microbiota may initiate lupus and/or interfere with gut integrity which results in microbial translocation and lupus exacerbation. Moreover, immune hyper-responsiveness of innate immune cells (macrophages and neutrophils) is demonstrated in a lupus model from the loss of inhibitory Fc gamma receptor IIb (FcgRIIb), which induces prominent responses through the cross-link between activating-FcgRs and innate immune receptors. The immune hyper-responsiveness can cause cell death, especially apoptosis and neutrophil extracellular traps (NETosis), which possibly exacerbates lupus, partly through the enhanced exposure of the self-antigens. Leaky gut monitoring and treatments (such as probiotics) might be beneficial in lupus. Here, we discuss the current information on leaky gut in lupus.

Funder

Chulalongkorn University

National Research Council of Thailand

NSRF via the Program Management Unit for Human Resources & Institutional Development, Research, and Innovation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3