Evaluation of Filtration Efficiency of Various Filter Media in Addressing Wildfire Smoke in Indoor Environments: Importance of Particle Size and Composition

Author:

Shirman Tanya1,Shirman Elijah1,Liu Sissi1

Affiliation:

1. Metalmark Innovations, PBC, Cambridge, MA 02138, USA

Abstract

Sub-micron particles are ubiquitous in the indoor environment, especially during wildfire smoke episodes, and have a higher impact on human health than larger particles. Conventional fibrous air filters installed in heating, ventilation, and air conditioning (HVAC) systems play an important role in controlling indoor air quality by removing various air pollutants, including particulate matter (PM). However, it is evident that the removal efficiency of wildfire smoke PM and its effect on filter performance is significantly under-studied. This study delves into the size-specific removal efficiency of pine needle smoke, a representative of wildfire smoke and emissions. We test an array of filter media with minimum efficiency reporting values (MERV) spanning 11–15. Both size-resolved particle number concentrations and mass concentrations were measured using an Optical Particle Sizer (OPS, TSI, Inc.) and a Scanning Mobility Particle Sizer (SMPS, TSI, Inc.). Furthermore, we characterize the filter media morphology and smoke particles deposited on filter fibers using Scanning Electron Microscopy (SEM) to gain insights into the interaction dynamics of these particles. Our findings add to the comprehension of the relationship between MERV designations and smoke removal efficiency. Such insight can inform standards and guidelines and equip decision-makers with the knowledge needed to initiate measures for mitigating the impact of air pollution, specifically on the indoor environment.

Funder

NSF SBIR Phase II

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3