A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors

Author:

Barrera-Llanga Kevin1ORCID,Burriel-Valencia Jordi1ORCID,Sapena-Bañó Ángel1ORCID,Martínez-Román Javier1ORCID

Affiliation:

1. Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

Induction machines (IMs) play a critical role in various industrial processes but are susceptible to degenerative failures, such as broken rotor bars. Effective diagnostic techniques are essential in addressing these issues. In this study, we propose the utilization of convolutional neural networks (CNNs) for detection of broken rotor bars. To accomplish this, we generated a dataset comprising current samples versus angular position using finite element method magnetics (FEMM) software for a squirrel-cage rotor with 28 bars, including scenarios with 0 to 6 broken bars at every possible relative position. The dataset consists of a total of 16,050 samples per motor. We evaluated the performance of six different CNN architectures, namely Inception V4, NasNETMobile, ResNET152, SeNET154, VGG16, and VGG19. Our automatic classification system demonstrated an impressive 99% accuracy in detecting broken rotor bars, with VGG19 performing exceptionally well. Specifically, VGG19 exhibited high accuracy, precision, recall, and F1-Score, with values approaching 0.994 and 0.998. Notably, VGG19 exhibited crucial activations in its feature maps, particularly after domain-specific training, highlighting its effectiveness in fault detection. Comparing CNN architectures assists in selecting the most suitable one for this application based on processing time, effectiveness, and training losses. This research suggests that deep learning can detect broken bars in induction machines with accuracy comparable to that of traditional methods by analyzing current signals using CNNs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3