Manufacturing and Properties of Various Ceramic-Embedded Composite Fabrics for Protective Clothing in Gas and Oil Industries Part II: Thermal Wear Comfort via Thermal Manikin

Author:

Kim Hyun-Ah1

Affiliation:

1. Korea Research Institute for Fashion Industry, 45-26, Palgong-ro, Dong-gu, Daegu 41028, Republic of Korea

Abstract

Thermal wear comfort for workwear clothing plays a vital role in maintaining comfortable water- and moisture-vapor-permeable properties while wearing clothing. In particular, thermal wear comfort measured using a thermal manikin is required in the protective workwear clothing market because their use provides objective data concerning the actual wearing performance of the clothing. This paper investigated the thermal wear comfort properties of various ceramic-embedded composite fabrics for workwear clothing worn in gas and oil industries produced from new schemes. The thermal insulation rate (Clo value) of Al2O3(Aluminum oxide)/graphite, ZnO(zinc oxide)/ZrC(zirconium carbide) and ZnO/ATO(antimony tin oxide)-embedded clothing was greater (25.5, 24.7 and 16.9%, respectively) than that of regular clothing (control), which was in accordance with the results (15.0, 13.8 and 11.3% higher, respectively) of the heat retention rate (I) of fabric specimens. It revealed that ZnO- and ATO-embedded yarns mixed with ZrC particles enhanced thermal wear comfort and had superior anti-static and UV-protective properties. Considering UV-protective and anti-static protective clothing worn in gas and oil industries and cold weather regions, it can be concluded that ZnO/ZrC-incorporated fabric is suitable because it showed superior thermal wear comfort with excellent UV-protective and acceptable anti-static properties. Meanwhile, assuming high functional performance for protective clothing worn in winter and factories, ZnO/ATO-incorporated fabric is pertinent to fabricating protective clothing for cold weather regions.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3