High-Temperature Tensile Behavior of an As-Cast Ni-W-Co-Ta Medium–Heavy Alloy

Author:

Li Yong1ORCID,Xiong Yi23,Tang Jinjin2ORCID,Han Shun1,Ren Fengzhang23,Wang Chunxu1,Wang Shubo4ORCID

Affiliation:

1. Central Iron and Steel Research Institute, Beijing 100081, China

2. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China

3. Collaborative Innovation Center of New Nonferrous Metal Materials and Advanced Processing Technology Jointly Established by the Ministry of Science and Technology, Luoyang 471023, China

4. Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland

Abstract

High-temperature tensile experiments with tensile rates ranging from 0.01 s−1 to 10 s−1 were carried out at various temperatures ranging from 1000 °C to 1250 °C with a Gleeble-3800 thermal simulation tester to evaluate the physical properties of an as-cast Ni–W–Co–Ta medium–heavy alloy. The microstructure evolution of the alloy during high-temperature stretching was characterized by metallographic microscopy, scanning electron microscopy, and transmission electron microscopy. The results indicated the emergence of multiple slip lines and the parallel arrangement of dislocations in the grain of the alloy after high-temperature stretching, and typical characteristics of plane slipping were observed. The plasticity of the Ni–W–Co–Ta medium–heavy alloy increased, but its strength decreased with an increase in the deformation temperature. In contrast, an increase in the strain rate resulted in a noticeable increase in the strength and plasticity of the medium–heavy alloy. The experiments revealed that the maximum tensile strength of the as-cast Ni–W–Co–Ta medium–heavy alloy was 735 MPa (T = 1000 °C, ε˙ = 10 s−1). Additionally, the maximum reduction in area and elongation was 38.1% and 11.8% (T = 1250 °C, ε˙ = 10 s−1), respectively. The mode of fracture after high-temperature tensile deformation was brittle fracturing.

Funder

National Key Research and Development Plan

Major science and technology projects of Henan Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3