Fabrication of Superhydrophobic Composite Membranes with Honeycomb Porous Structure for Oil/Water Separation

Author:

Zhang Chunling,Yang Yichen,Luo Shuai,Cheng Chunzu,Wang Shuli,Liu Bo

Abstract

Due to the low separation efficiency and poor separation stability, traditional polymer filtration membranes are prone to be polluted and difficult to reuse in harsh environments. Herein, we reported a nanofibrous membrane with a honeycomb–like pore structure, which was prepared by electrospinning and electrospraying. During the electrospraying process, the addition of polydimethylsiloxane and fumed SiO2 formed pores by electrostatic repulsion between ions, thereby increasing the membrane flux, subsequently reducing the surface energy, and increasing the surface roughness. The results show that when the content of SiO2 reaches 1.5 wt%, an ultra–high hydrophobic angle (162.1° ± 0.7°) was reached. After 10 cycles of oil–water separation tests of the composite membrane, the oil–water separation flux and separation efficiency was still as high as 5400 L m−2 h−1 and 99.4%, and the membrane maintained excellent self–cleaning ability.

Funder

Jilin Province Science and Technology Department

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3