Synergistic Effects of Multiple Heterojunctions and Dopant Atom for Enhancing the Photocatalytic Activity of C-Modified Zn-Doped TiO2 Nanofiber Film

Author:

Lu Ying12,Qin Xiangge1ORCID,Hong Jinzhong3

Affiliation:

1. School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China

2. School of Science, Jiamusi University, Jiamusi 154007, China

3. School of Civil Engineering and Architecture, Jiamusi University, Jiamusi 154007, China

Abstract

To design efficient photocatalytic systems, it is necessary to inhibit the compounding of electron-hole pairs and promote light absorption in photocatalysts. In this paper, semiconductor heterojunction systems of C-modified Zn-doped TiO2 composite nanomaterials with nanofiber structures were synthesized by electrospinning and hydrothermal methods. The composite nanofiber film was thoroughly characterized and the morphology, structure, chemical phases and optical properties were determined. Scanning electron microscopy confirmed that the nanofiber diameter was 150–200 nm and the C particles were uniformly modified on the smooth nanofiber surfaces. X–ray diffraction patterns and Raman show TiO2 as a typical anatase, modified C as graphite and Zn as ZnOcrystals. Moreover, the entry of Zn and C into the TiO2 lattice increases the crystal defects. Meanwhile, TiO2, ZnO and graphite form multiple heterojunctions, providing pathways for photogenerated carrier transfer. These synergistic effects inhibit the recombination of electron-hole pairs and provide more reaction sites, thus improving the photocatalytic efficiency. UV-Vis diffuse reflectance spectroscopy and fluorescence spectroscopyimply that these synergistic effects lead to improved optical properties of the composite. Using organic dyes (methylene blue, methyl orange, rhodamine Bandmalachite green) as simulated pollutants, the composite nanofiber film exhibited good photocatalytic activity for all dyes due to the significantly large specific surface area, small size effect and synergistic effects of multiple heterojunctions and dopant atom. In addition, the nanofiber film has good reusability and stability for the photodegradation of organic dyes, so it has potential for industrial applications.

Funder

Basic Science Research Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removal of Hazardous Organic Dyes from Liquid Wastes Using Advanced Nanomaterials;International Journal of Molecular Sciences;2024-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3