Microstructures and Corrosion Behaviors of Non-Equiatomic Al0.32CrFeTi0.73(Ni1.50−xMox)(x = 0, 0.23) High-Entropy Alloy Coatings Prepared by the High-Velocity Oxygen Fuel Method

Author:

Shu Xiaoyong123ORCID,Wang Hao123ORCID,Zhao Jianping123

Affiliation:

1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China

2. Institute of Reliability centered Manufacturing (IRcM), Nanjing Tech University, Nanjing 211816, China

3. Jiangsu Key Lab of Design and Manufacture of Extreme Pressure Equipment, Nanjing 211816, China

Abstract

The non-equiatomic Al0.32CrFeTi0.73(Ni1.50−xMox) (x = 0, 0.23) high-entropy alloy (HEA) coatings were prepared by the high-velocity oxygen fuel (HVOF) method. The microstructures and corrosion behaviors of the HVOF-prepared coatings were investigated. The corrosion behaviors were characterized by polarization, EIS and Mott-Schottky tests under a 3.5 wt.% sodium chloride aqueous solution open to air at room temperature. The Al0.32CrFeTi0.73Ni1.50 coating is a simple BCC single-phase solid solution structure compared with the corresponding poly-phase composite bulk. The structure of the Al0.32CrFeTi0.73Ni1.27Mo0.23 coating, combined with the introduction of the Mo element, means that the (Cr,Mo)-rich sigma phase precipitates out of the BCC solid solution matrix phase, thus forming Cr-depleted regions around the sigma phases. The solid solution of large atomic-size Mo element causes the lattice expansion of the BCC solid solution matrix phase. Micro-hole and micro-crack defects are formed on the surface of both coatings. The growth of both coatings’ passivation films is spontaneous. Both passivation films are stable and Cr2O3-rich, P-type, single-layer structures. The Al0.32CrFeTi0.73Ni1.50 coating has better corrosion resistance and much less pitting susceptibility than the corresponding bulk. The corrosion type of the Mo-free coating is mainly pitting, occurring in the coating’s surface defects. The Al0.32CrFeTi0.73Ni1.27Mo0.23 coating with the introduction of Mo element increases pitting susceptibility and deteriorates corrosion resistance compared with the Mo-free Al0.32CrFeTi0.73Ni1.50 coating. The corrosion type of the Mo-bearing coating is mainly pitting, occurring in the coating’s surface defects and Cr-depleted regions.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference40 articles.

1. A review on high entropy alloys coatings: Fabrication processes and property assessment;Li;Adv. Eng. Mater.,2019

2. Thermal spray high-entropy alloy coatings: A review;Meghwal;J. Therm. Spray Technol.,2020

3. Modeling residual stress development in thermal spray coatings: Current status and way forward;Abubakar;J. Therm. Spray Technol.,2017

4. Effect of processing parameters on the microstructures and corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings;Wang;Mater. Corros.,2013

5. Iron-Based Amorphous Coatings produced by HVOF thermal spray processing-coating structure and properties;Beardsley;Metall. Mater. Trans.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3