The In Vitro Impact of Two Scaffold-Type Structure Dental Ceramics on the Viability, Morphology, and Cellular Migration of Pharyngeal Cancer Cells

Author:

Fabricky Mihai M. C.,Racea Robert Cosmin,Macasoi Ioana,Pinzaru IuliaORCID,Sinescu CosminORCID,Manea Horatiu Cristian,Rusu Laura-CristinaORCID,Stoian DanaORCID,Buzatu RoxanaORCID,Dinu StefaniaORCID

Abstract

There is a growing trend with respect to the use of ceramic materials in dental practice. With an increase in the number of cases of head and neck cancer, the use of dental implants in these patients is subject to controversy. Consequently, the purpose of the present study was to evaluate the impact of two ceramic materials on the viability, proliferation, migration, and structure of the cytoskeleton and nuclei of pharyngeal cancer cells. Therefore, samples of the two ceramic were immersed in artificial saliva with three different pH values in order to better simulate the natural biological environment. A 21-day immersion period was followed by testing of the saliva on pharyngeal cancer cell line Detroit-562 for its viability, morphology, and migration, as well as its effects on the nucleus and cytoskeleton. The results of the study after stimulation of Detroit-562 cells for 72 h with the three types of artificial saliva in which the ceramic materials were immersed indicated the following: (i) viability of cells did not change significantly, with the percentage of viable cells not falling below 90%; (ii) no morphological changes were recorded, with the shape and number of cells being similar to that of the control cells; (iii) the scratch assay method indicated that the two types of ceramics do not stimulate cell migration; and (iv) fluorescence immunocytochemistry revealed that both the nucleus and the cytoskeleton distributions were unaltered, as they were observed in unstimulated cells. The preliminary results of the study indicate that the investigated ceramic materials did not interact unfavorably with tumor cells when immersed in artificial saliva, thereby supporting the possibility of their safe use in cancer patients.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3