Numerical Simulation of Fluid Flow Characteristics and Heat Transfer Performance in Graphene Foam Composite

Author:

Bi Jinpeng12,Zhou Rongyao12,Lv Yuexia12,Du Tingting34ORCID,Ge Juan12,Zhou Hongyang12

Affiliation:

1. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Institute of Mechanical Design and Research, Jinan 250031, China

3. School of Energy and Power Engineering, Shandong University, Jinan 250061, China

4. Shenzhen Research Institute of Shandong University, Shenzhen 518057, China

Abstract

Graphene foam composite is a promising candidate for advanced thermal management applications due to its excellent mechanical strength, high thermal conductivity, ultra-high porosity and huge specific surface area. In this study, a three-dimensional physical model was developed in accordance with the dodecahedral structure of graphene foam composite. A comprehensive numerical simulation was carried out to investigate the fluid flow and convective heat transfer in open-cell graphene foam composite by using ANSYS Fluent 2021 R1 commercial software. Research results show that, as porosity increases, the pressure gradient for graphene foam composite with circular and triangular cross-section struts is reduced by 65% and by 77%, respectively. At a given porosity of 0.904, when the inlet velocity increases from 1 m/s to 5 m/s, the pressure gradient is increased by 11.3 times and 13.8 times, and the convective heat transfer coefficient is increased by 54.5% and 43% for graphene foam composite with circular and triangular cross-section struts, respectively. Due to the irregularity of the skeleton distribution, the pressure drop in Y direction is the highest among the three directions, which is 8.7% and 17.4% higher than that in the Z and X directions at the inlet velocity of 5 m/s, respectively. The convective heat transfer coefficient in the Y direction is significantly lower than that along the X and Z directions. Furthermore, triangular cross-section struts induce a greater pressure drop but offer less effective heat transfer compared to circular struts. The research findings may provide critical insights into the design and optimization of graphene foam composites, and promote their potential for efficient thermal management and gas/liquid purification in engineering applications.

Funder

Natural Science Foundation of Shandong Province

Shenzhen Fundamental Research Program

Department of Education of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3