CoCrFeMnNi0.8V/Cr3C2-Ni20Cr High-Entropy Alloy Composite Thermal Spray Coating: Comparison with Monolithic CoCrFeMnNi0.8V and Cr3C2-Ni20Cr Coatings

Author:

Kiape Stavros1,Glava Maria1,Georgatis Emmanuel1ORCID,Kamnis Spyros23,Matikas Theodore E.1ORCID,Karantzalis Alexandros E.1

Affiliation:

1. Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

2. Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece

3. Castolin Eutectic-Monitor Coatings Ltd., Newcastle upon Tyne NE29 8SE, UK

Abstract

High-entropy alloys (HEAs) are revolutionizing the field of surface engineering, challenging traditional alloy frameworks with their superior mechanical attributes and resistance to corrosion. This investigation delves into the properties of the CoCrFeMnNi0.8V HEAs, both as a standalone material and when blended with Cr3C2-Ni20Cr, to evaluate their efficacy as cutting-edge surface treatments. The addition of vanadium to the CoCrFeMnNi0.8V alloy results in a distinctive microstructure that improves hardness and resistance to abrasion. The incorporation of Cr3C2-Ni20Cr particles enhances the alloy’s toughness and longevity. Employing high-velocity oxy-fuel (HVOF) thermal spray methods, these coatings are deposited onto steel substrates and undergo detailed evaluations of their microstructural characteristics, abrasion, and corrosion resistance. Findings reveal the CoCrFeMnNi0.8V coating’s exceptional ability to withstand corrosion, especially in environments rich in chlorides. The hybrid coating benefits from the combination of the HEA’s inherent corrosion resistance and the enhanced wear and corrosion resistance provided by Cr3C2-Ni20Cr, delivering comprehensive performance for high-stress applications. Through the fine-tuning of the application process, the Cr3C2-Ni20Cr reinforced high-entropy alloy coating emerges as a significant advancement in protective surface technology, particularly for use in marine and corrosive settings. This study not only highlights the adaptability of HEAs in surface engineering but also prompts further investigation into innovative material pairings.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3