Abstract
Structural characterization of compound material coatings is usually achieved using time-consuming and destructive techniques such as optical and electrical microscopy, which require the use of grinding processes not always compatible with the material. This paper reports on the effective use of a theoretical model based on X-ray diffraction to calculate the thickness and composition of thin oxide films formed on the surface of zinc coatings. Zinc coatings are widely used in industrial application as protective layers against the atmospheric corrosion of steel substrates. The thickness of single- and multi-layer coatings is estimated using grazing incidence X-ray diffraction and various incidence angles. The coatings were grown using hot-dip, pack cementation and thermal spray techniques, and their experimental characteristics were compared to the theoretically predicted values of thickness and composition. The results indicate the formation of a thin zinc oxide film on top of each coating, which acts as an isolation layer and protects the surface of the sample against the environmental corrosion. Finally, the penetration depth of the X-rays into the zinc-based coatings for grazing incidence and Bragg–Brentano X-ray diffraction geometries were calculated using theoretical equations and experimentally confirmed.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献