Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: A Comprehensive Analysis

Author:

Gao Kang1,Zhang Yun1ORCID,Yi Junhao1,Dong Fang2,Chen Pinghu3ORCID

Affiliation:

1. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Light Alloy Research Institute, Central South University, Changsha 410083, China

3. College of Mechanical Engineering, Key Laboratory of Hunan Province of Equipment Safety Service Technology under Extreme Environment, University of South China, Hengyang 421001, China

Abstract

Titanium alloys are acclaimed for their remarkable biocompatibility, high specific strength, excellent corrosion resistance, and stable performance in high and low temperatures. These characteristics render them invaluable in a multitude of sectors, including biomedicine, shipbuilding, aerospace, and daily life. According to the different phases, the alloys can be broadly categorized into α-titanium and β-titanium, and these alloys demonstrate unique properties shaped by their respective phases. The hexagonal close-packed structure of α-titanium alloys is notably associated with superior high-temperature creep resistance but limited plasticity. Conversely, the body-centered cubic structure of β-titanium alloys contributes to enhanced slip and greater plasticity. To optimize these alloys for specific industrial applications, alloy strengthening is often necessary to meet diverse environmental and operational demands. The impact of various processing techniques on the microstructure and metal characteristics of titanium alloys is reviewed and discussed in this research. This article systematically analyzes the effects of machining, shot peening, and surface heat treatment methods, including surface quenching, carburizing, and nitriding, on the structure and characteristics of titanium alloys. This research is arranged and categorized into three categories based on the methods of processing and treatment: general heat treatment, thermochemical treatment, and machining. The results of a large number of studies show that surface treatment can significantly improve the hardness and friction mechanical properties of titanium alloys. At present, a single treatment method is often insufficient. Therefore, composite treatment methods combining multiple treatment techniques are expected to be more widely used in the future. The authors provide an overview of titanium alloy modification methods in recent years with the aim of assisting and promoting further research in the very important and promising direction of multi-technology composite treatment.

Funder

Education Department of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3