The Roughness Effect on the Preparation of Durable Superhydrophobic Silver-Coated Copper Foam for Efficient Oil/Water Separation

Author:

Baxevani Aikaterini1,Stergioudi Fani1ORCID,Skolianos Stefanos1

Affiliation:

1. Physical Metallurgy Laboratory, School of Mechanical Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

Abstract

In recent decades, there has been a significant interest in superhydrophobic coatings owing to their exceptional properties. In this research work, a superhydrophobic coating was developed on copper foams with a different roughness via immersion in AgNO3 and stearic acid solutions. The resulting foams exhibited water contact angles of 180°. Notably, surface roughness of the substrate influenced the development of silver dendrites and stearic acid morphologies, leading to different structures on rough and smooth copper foams. Separation efficiency was maintained above 94% for various pollutants, suggesting good stability and durability, irrespective of the substrate’s roughness. Conversely, absorption capacity was influenced by surface roughness of the substrate, with smooth copper foams demonstrating higher absorption values, primarily due to its uniform porosity and microstructure, which allowed for efficient retention of pollutants. Both copper foams exhibited excellent thermal and chemical stability and maintained their hydrophobic properties even after a 40 h exposure to harsh conditions. Mechanical durability of modified copper foams was tested by dragging and in ultrasounds, exhibiting promising results. The samples with the smooth substrate demonstrated improved coating stability.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3