Influence of a UVA-Activated TiO2 Coating on Bacterial Surface Colonization in Water-Bearing Systems

Author:

Steinhäußer Linda1ORCID,König Ulla1ORCID,Fietzke Fred1,Gotzmann Gaby1ORCID

Affiliation:

1. Fraunhofer-Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstraße 28, 01277 Dresden, Germany

Abstract

This study focuses on the use of superhydrophilic titanium dioxide (TiO2) coatings applied to the surfaces of water-bearing systems to prevent surface colonization and biofilm formation. Biofilms in water-bearing systems are a problem in many industrial areas and are associated with risks to hygiene and health, material damage, and high costs for cleaning and maintenance. We investigated the suitability of TiO2 coatings activated by UVA irradiation to achieve a superhydrophilic surface. The well-adherent coatings were deposited on flat and curved substrates (stainless steel, Al2O3) by pulsed magnetron sputtering. Surface characteristics, wettability, and the influence on microbial surface colonization were evaluated by WCA measurements, SEM, and XRD. For microbiological evaluation, Escherichia coli and Staphylococcus warneri were used. An adapted and specialized regime for sample conditioning and testing was developed that allows comparability with upcoming studies in this field. The superhydrophilicity was stable for up to 4 days, and an additional UVA reactivation step revealed comparable results. The microbiological studies proved a successful prevention of bacterial colonization on the activated coatings, which is attributed to their superhydrophilicity. The results demonstrate the potential of UV-activated TiO2 as a long-term coating of water-bearing systems, like pipes, on which it assists in avoiding biofilm formation.

Funder

German Federal Ministry for Economic Affairs and Energy (BMWi) as AiF project “Siphon”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3