Theoretical Design of Near-Infrared Tunable Surface Plasmon Resonance Biosensors Based on Gate-Controlled Graphene Plasmons

Author:

Xiao Yi123,Cui Danting2,Zhong Yongchun123,Li Zhibin2,Zhang Jun123,Yu Jianhui123ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China

2. Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China

3. Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China

Abstract

A tunable near-infrared surface plasmon resonance (SPR) biosensor based on gate-controlled graphene plasmons is numerically investigated by using the finite element method (FEM) and the transfer matrix method (TMM). The novel properties of chemical potential sensing make the proposed sensor promising in the application of ultra-sensitive and highly specific biosensing technology. The sensitivity of chemical potential sensing in wavelength interrogation mode can be calculated to be 1.5, 1.89, 2.29, 3.21, 3.73 and 4.68 nm/meV, respectively, at the resonance wavelengths of 1100, 1200, 1310, 1550, 1700 and 1900 nm. The figure of merit (FOM) achieves 129.3, 101.1, 84.5, 67.7, 69.5 and 59.7 eV−1, respectively, at these resonance wavelengths. The sensitivity of chemical potential sensing in gate voltage interrogation mode also can be calculated to be 156.9822, 143.6147, 131.0779, 111.0351, 101.3415 and 90.6038 mV/meV, respectively, at the incident wavelengths of 1100, 1200, 1310, 1550, 1700 and 1900 nm. The FOM achieves 135.6, 103.0, 88.9, 62.2, 66.6 and 61.5 eV−1, respectively, at these incident wavelengths. Theoretical estimates suggest that the limit of detection (LOD) of the sensor’s DNA sensing can reach the level of femtomolar or even attomolar, comparable to and even lower than that of 2D nanomaterial-enhanced metal SPR sensors with AuNPs as a sensitivity enhancement strategy. The feasibility of preparation and operation of this new concept SPR biosensor is also analyzed and discussed.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Guangdong Province

Key-Area Research and Development Program of Guangdong Province

the Science and Technology Projects of Guangzhou

Department of Science and Technology of Guangdong Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3