Drug Release and Biocompatibility of a Paclitaxel-Coated Balloon Prepared Using the Electrostatic Spray Method

Author:

Yang Xi1,Liu Hengquan1,He Junxi2ORCID,Hu Qiong1,Pan Changjiang3ORCID,Wang Dongfang1,Li Junfeng1,Liu Chunhai2ORCID,Huang Ming1,Xiang Qian1,Liu Ren4

Affiliation:

1. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

2. Chengdu Neurotrans Medical Technology Co., Ltd., Chengdu 610219, China

3. Jiangsu Province Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an 223033, China

4. Department of Research & Development, Chengdu Medtech-Life Co., Ltd., Chengdu 610094, China

Abstract

Paclitaxel-coated balloons (PCBs) have become effective treatment options for vascular disease, but long-term drug release and biocompatibility are influenced by the drug patterns. In this work, paclitaxel coatings were prepared via electrostatic spraying, and the effect of D-tartaric acid additives was investigated. Microstructures and surface morphology were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Drug release was measured in vitro, and biocompatibility was evaluated using the haemolysis rate, platelet adhesion and activation, protein adsorption, cell adhesion, and cell proliferation. Our results showed that a uniform crystalline paclitaxel drug coating was obtained, and that the pattern and release of paclitaxel was influenced by the content of D-tartrate. The contact angle of all coatings was less than that of nylon 12. The drug coatings prepared at a mass ratio of paclitaxel to D-tartaric acid of 2:1 had the highest drug release in a brief period of time. The haemolysis rate of the drug coating was less than 5%. Compared with the control samples, platelet adhesion and activation were significantly reduced, albumin adsorption was increased, and the adsorption of fibrinogen was reduced on the surface of the drug coating. Endothelial cells demonstrated good proliferation after three days of cell culture. Therefore, PCBs with specific patterns have good biocompatibility and drug release, with potential clinical applications in vascular disease.

Funder

Sichuan Science and Technology Program

Jiangsu province engineering research centre for biomedical materials and advanced medical devices

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3