A Comprehensive Assessment of Al-Si Coating Growth at Various Heating Rates, Soaking Temperatures, and Times

Author:

Wu Siyu1,Bardelcik Alexander1ORCID,Chiriac Constantin2,Shi Cangji3

Affiliation:

1. School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

2. Research & Advanced Engineering, Ford Motor Company, 2101 Village Road, Dearborn, MI 48121, USA

3. Promatek Research Centre, 2550 Steeles Ave. E, Brampton, ON L6T 5R3, Canada

Abstract

In conventional hot stamping, an Al-Si-coated blank is first heated above the austenitization temperature and then soaked for a period of time within a furnace, prior to the stamping operation. In this work, the impacts of furnace heating rate, soaking temperature, and soaking time on the Al-Si coating evolution were investigated for two commercial coating weights, 80 and 150 g/m2. These heat treatment parameters during heating and soaking affect the coating microstructure and the thickness of the interdiffusion layer, which affect the properties of the as-formed coatings. The transformation and growth of binary Fe-Al and ternary Fe-Al-Si intermetallic layers were characterized and quantified for soak times up to 240 s. The results show that the effect of the heating rate on the Al-Si intermetallic distribution and ternary phase morphology was more severe than the soaking time and soaking temperature. The Fe2Al5 (η) phase was the dominant layer at the beginning of the soaking stage with a Fe3Al2Si3 (τ1) layer formed within it, and then the Fe3Al2Si3 layer transformed into FeAl (β2) as the soaking time increased due to the interdiffusion of Fe and Al. The transformation of Fe3Al2Si3 to FeAl occurred at a higher rate for elevated soaking temperatures due to the greater diffusivity of Al and Fe. The interdiffusion layer (IDL) consisted of FeAl,Fe3Al(β1) and α−Fe. Higher soaking temperatures of 1000 °C resulted in a thicker IDL for the same soak time when compared with 900 °C and 950 °C, but when the heating rate was lower, the IDL was thicker than that at the higher heating rate since a longer heating time was required to reach the soaking temperature of 900 °C, which prolonged the diffusion time during the heating stage. The findings were similar for AS80.

Funder

the Ford Motor Company

Promatek Research Centre

Natural Sciences and Engineering Research Council

the Ontario Centres of Excellence

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3