Wear Behavior Assessment of New Wire-Arc Additively Manufactured Surfaces on AA6061 and AA5086 Alloys through Multi-Walled Carbon Nanotubes and Ni Particles Inducement

Author:

Muzamil Muhammad1,Iqbal Syed Amir2,Anwar Muhammad Naveed1,Samiuddin Muhammad3ORCID,Yang Junzhou4ORCID,Raza Muhammad Ahmed1

Affiliation:

1. Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan

2. Department of Industrial and Manufacturing Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan

3. Department of Metallurgical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan

4. School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710075, China

Abstract

This study investigates the new surface development on AA6061 and AA5086 alloys considering the wire-arc additive manufacturing technique as a direct energy deposition (DED) process of wire. Two different quantities of MWCNTs, i.e., 0.01 (low) and 0.02 (high) g, with a constant nickel (Ni) weight (0.2 g) were pre-placed in the created square patterns. ER4043 filler was used as a wire for additive deposition, and an arc was generated through a tungsten inert gas (TIG) welding source. Furthermore, hardness and pin-on-disk wear-testing methods were employed to measure the changes at the surfaces with the abovementioned inducements. This work was designed to illustrate the hardness and the offered wear resistance in terms of mass loss of the AA6061 and AA5086 aluminum alloys with the function of nano-inducements. Two sliding distance values of 500 m and 600 m were selected for the wear analysis of mass loss from tracks. A maximum increase in hardness for AA6061 and AA5086 alloys was observed in the experiments, with average values of 70.76 HRB and 74.86 HRB, respectively, at a high mass content of MWCNTs. Moreover, the tribological performance of the modified surfaces improved with the addition of MWCNTs with Ni particles in a broader sense; the modified surfaces performed exceptionally well for AA5086 compared to AA6061 with 0.02 and 0.01 g additions, respectively. The system reported a maximum of 38.46% improvement in mass loss for the AA5086 alloy with 0.02 g of MWCNTs. Moreover, the morphological analysis of the developed wear tracks and the mechanism involved was carried out using scanning electron microscope (SEM) images.

Funder

NED University of Engineering and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3