Quasi-Isotropy Structure and Characteristics of the Ultrasonic-Assisted WAAM High-Toughness Al Alloy

Author:

Luo Wei1,Xu Peng12ORCID,Zhang Ming3,Li Jiangshan3

Affiliation:

1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

2. Teaching and Scientific Research Center, Guizhou Qiannan Economic College, Qiannan 550600, China

3. HanKaiSi Intelligent Technology Co., Ltd., Guiyang 550016, China

Abstract

Wire Arc Additive Manufacturing (WAAM) has emerged as a highly promising method for the production of large-scale metallic structures; nonetheless, the presence of microstructural inhomogeneities, anisotropic properties, and porosity defects within WAAM Al alloys has substantially hindered their broader application. To surmount these obstacles, ultrasonic-assisted WAAM was applied in the fabrication of thin-wall structures utilizing 7075 Al alloy. This study investigates the effects of ultrasonic-assisted Wire Arc Additive Manufacturing (WAAM) on the structural and mechanical properties of 7075 Al alloy specimens. Microstructural analysis showed a significant refinement in grain distribution, with the average grain size notably reduced, enhancing the material’s homogeneity. Porosity across the specimens was quantified, showing a decrease in values from the upper (0.02151) to the middle (0.01347) and lower sections (0.01785), correlating with the rapid cooling effects of WAAM. Mechanical testing revealed that ultrasonic application contributes to a consistent hardness pattern, with measurements averaging 70.71 HV0.1 horizontally and 71.23 HV0.1 vertically, and significantly impacts tensile strength; the horizontally oriented specimen exhibited a tensile strength of 236.03 MPa, a yield strength of 90.29 MPa, and an elongation of 31.10% compared to the vertically oriented specimen which showed reduced mechanical properties due to the presence of defects such as porosity and cracks. The fracture morphology analysis confirmed a predominantly ductile fracture mode, supported by the widespread distribution of dimples on the fracture surface. The integration of ultrasonic vibrations not only refined the grain structure but also modified the secondary phase distribution, enhancing the quasi-isotropic properties of the alloy. These results underline the potential of ultrasonic-assisted WAAM in improving the performance of the 7075 Al alloy for critical applications in the aerospace and automotive industries, suggesting a promising direction for future research and technological advancement in additive manufacturing processes.

Funder

Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3