Synthesis and Characterization of Hydrophobic and Low Surface Tension Polyurethane

Author:

Rudlong Autumn M.1,Goddard Julie M.1

Affiliation:

1. Department of Food Science, Cornell University, Ithaca, NY 14853, USA

Abstract

Polyurethane is a common polymeric coating, providing abrasion resistance, chemical durability, and flexibility to surfaces in the biomedical, marine, and food processing industries with great promise for future materials due to its tunable chemistry. There exists a large body of research focused on modifying polyurethane with additional functionalities, such as antimicrobial, non-fouling, anticorrosive action, or high heat resistance. However, there remains a need for the characterization and surface analysis of fluoro-modified polyurethanes synthesized with commercially available fluorinated polyol. In this work, we have synthesized traditional solvent-borne polyurethane, conventionally found in food processing facilities, boat hulls, and floor coatings, with polyurethane containing 1%, 2%, and 3% perfluoropolyether (PFPE). Polyurethane formation was confirmed by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, with the urethane band forming at 1730 cm−1 and the absence of free isocyanate stretching from 2275–2250 cm−1. X-ray photoelectron spectroscopy (XPS) was used to confirm perfluoropolyether polymerization with an increase in the atomic percentage of fluorine. Wettability and hydrophobicity were determined using a dynamic water contact angle with significant differences in advancing the water contact angle with the inclusion of perfluoropolyether blocks (PU–co–1PFPE 131.5° ± 8.0, PU–co–2PFPE 130.9° ± 5.8, and PU–co–3PFPE 128.8° ± 5.2) compared to the control polyurethane (93.6° ± 3.6). The surface orientation of fluorine supported the reduced critical surface tensions of polyurethane modified with PFPE (12.54 mN m−1 for PU–co–3PFPE compared to 17.19 mN m−1 for unmodified polyurethane). This work has demonstrated the tunable chemical qualities of polyurethane by presenting its ability to incorporate fluoropolymer surface characteristics, including low critical surface tension and high hydrophobicity.

Funder

United States Department of Agriculture National Institute of Food and Agriculture

Hatch

Foundation for Food and Agriculture Research

Cornell Center

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference32 articles.

1. A brief discussion on advances in polyurethane applications;Das;Adv. Ind. Eng. Polym. Res.,2020

2. Polyurethane types, synthesis and applications—A review;Akindoyo;RSC Adv.,2016

3. Oertel, G. (1994). Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties, Hanser/Gardner [Distributor].

4. Synthesis and properties evaluation of quaternized polyurethanes as antibacterial adhesives;Hu;J. Polym. Sci. Part A Polym. Chem.,2019

5. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion;Hwang;J Colloid Interface Sci.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3