Abstract
Crater depth is a vital issue in dynamic compaction (DC) because it is a controlling parameter in DC and a characterization index of soil properties. A continuous mathematical model capturing the time-domain process of tamper displacement is presented in this paper. The model is simple and the parameters involved are easy to obtain. It was found that the accumulated crater depth increases but its increment in the crater depth decreases with multiple impacts. Three groups of large-scale DC tests with 10,000 kN∙m were conducted to evaluate the performance of the proposed model. The results showed that the proposed model captures the typical trends in the tamper displacement of single and multiple impacts. In addition, a concept of the crater depth ratio is proposed based on the proposed model, and the concept is used to evaluate the efficiency of DC and to predict the optimum tamping number of DCs.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
National Science Foundation of Hunan Province, China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献